The monthly payment is $1989.24
The remaining balance is $429,675.84
Explanation:Given that loan amount = $230,000
Rate R = 3.78% = 0.0378
Monthly rate = 0.0378/12 = 0.00315
Time n = 12 years
We have:
[tex]M=\frac{PR(1+R)^n}{(1+R)^n-1}[/tex]Using the above formula, we have:
[tex]\begin{gathered} M=\frac{230000\times0.00315(1+0.00315)^{144}}{(1+0.00315)^{144}-1} \\ \\ =1989.24 \end{gathered}[/tex]The remaining balance after 12 years is:
[tex]\begin{gathered} (1989.24\times12\times30)-(1989.24\times12\times12) \\ =429675.84 \end{gathered}[/tex]