To apply cross-products to solve proportion you have to multiply opposite numerators and denominators together.
Then, let's start with a.:
a. 6 cans of soup cost $2.46. How much would 10 cans cost?
Let's form the ratios:
[tex]\frac{6\text{ cans}}{2.46\text{ \$}}=\frac{10\text{ cans}}{x\text{ cost}}[/tex]If you use cross-products you will obtain:
[tex]\begin{gathered} 6\times x=10\times2.46 \\ \text{Divide both sides by 6} \\ \frac{6\times x}{6}=\frac{10\times2.46}{6} \\ \text{Simplify} \\ x=\frac{10\times2.46}{6}=4.1 \end{gathered}[/tex]Thus, 10 cans would cost $4.1.
b. If ½ h lb of turkey has 320 calories, how many calories are in 3/4 pounds?
The ratios are:
[tex]\begin{gathered} \frac{1/2\text{ lb}}{320\text{ calories}}=\frac{3/4\text{ lb}}{x} \\ \text{Multiply both sides by 320} \\ \frac{1/2\text{ lb}}{320\text{ calories}}\times320calories=\frac{3/4\text{ lb}}{x}\times320calories \\ \text{Simplify} \\ 1/2\text{ lb}=\frac{3/4\text{ lbx 320 calories}}{x} \\ \text{Multiply both sides by x} \\ 1/2\text{ lb}\times x=\frac{3/4\text{ lbx 320 calories}}{x}\times x \\ \text{Simplify} \\ 1/2\text{ lb}\times x=3/4\times320\text{ calories} \\ \text{Divide both sides by 1/2} \\ \frac{1/2\text{ lb}\times x}{1/2\text{ lb}}=\frac{3/4lb\times320\text{ calories}}{1/2\text{ lb}} \\ \text{Simplify} \\ x=\frac{3/4lb\times320\text{ calories}}{1/2\text{ lb}}=480\text{ calories} \end{gathered}[/tex]Thus, 3/4 pounds have 480 calories.