start by calculating the mean of the data using the formula
[tex]\bar{x}=\frac{\sum ^{\infty}_{i\mathop=0}xi}{n}[/tex][tex]\begin{gathered} \bar{x}=\frac{40+50+55+57+57+57+60}{7} \\ \bar{x}=\frac{376}{7} \\ \bar{x}=53.714\approx53.7 \end{gathered}[/tex]now use the formula for the standard deviation
[tex]\sigma=\sqrt[]{\sum^{\infty}_{i\mathop=0}}\frac{(x_i-\bar{x})^2}{n}[/tex]find the sum of the standard deviations
[tex](40-53.7)^2+(50-53.7)^2+(55-53.7)^2+(57-53.7)^2+(57-53.7)^2+(57-53.7)^2+(60-53.7)^2[/tex][tex]\begin{gathered} =187.69+13.69+1.69+10.89+10.89+10.89+30.69 \\ =275.43\approx275.4 \end{gathered}[/tex]now find the standard deviation
[tex]\begin{gathered} \sigma=\sqrt[]{\frac{275.4}{7}} \\ \sigma=6.272\approx6.3 \end{gathered}[/tex]