The given quadratic equation is
[tex]3x^2=5x+2[/tex]First of all, let us re-write the equation in standard form.
[tex]3x^2-5x-2=0[/tex]Recall that the standard form of a quadratic equation is given by
[tex]ax^2+bx+c=0[/tex]Comparing the standard form with the given equation we see that,
a = 3
b = -5
c = -2
Now we can solve using the quadratic formula.
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]Let us substitute the values of the coefficients a, b, c
[tex]\begin{gathered} x=\frac{-(-5)\pm\sqrt[]{(-5)^2-4(3)(-2)}}{2(3)} \\ x=\frac{5\pm\sqrt[]{25^{}-(-24)}}{6}=\frac{5\pm\sqrt[]{25^{}+24}}{6}=\frac{5\pm\sqrt[]{49}}{6}=\frac{5\pm7}{6} \end{gathered}[/tex]So, the two possible solutions of the quadratic equation are
[tex]\begin{gathered} x_1=\frac{5+7}{6}\: \text{and}\: x_2=\frac{5-7}{6} \\ x_1=\frac{12}{6}\: \text{and}\: x_2=\frac{-2}{6} \\ x_1=2\: \text{and}\: x_2=-\frac{1}{3} \end{gathered}[/tex]Therefore, the solution of the given quadratic equation is
[tex]x=(2,-\frac{1}{3})[/tex]