Write the coordinates of the vertices after a rotation 270º counterclockwise around the origin.Gho4FE-10 -8 -6-4-28642-2-4-6246 8 10

Given:
The coordinates of the vertices are,
[tex]\begin{gathered} E(-8,6) \\ F(-8,10) \\ G(-3,10) \\ H(-3,6) \end{gathered}[/tex]To find:
The coordinates of the vertices after the rotation of 270 degrees counterclockwise direction.
Explanation:
The transformation rule is,
[tex](x,y)\rightarrow(y,-x)[/tex]Applying the rule,
The new coordinates of the vertices become,
[tex]\begin{gathered} E^{\prime}(6,8) \\ F^{\prime}(10,8) \\ G^{\prime}(10,3) \\ H^{\prime}(6,3) \end{gathered}[/tex]Final answer:
The new coordinates of the vertices become,
[tex]\begin{gathered} E^{\prime}(6,8) \\ F^{\prime}(10,8) \\ G^{\prime}(10,3) \\ H^{\prime}(6,3) \end{gathered}[/tex]