Explanation
Step 1
diagram
Step 2
the kinetick energy is given by
[tex]E_{_k}=\frac{1}{2}mv^2[/tex]and potenital energy is given by:
[tex]E_p=\text{mgh}[/tex]so, the points where the energy is the same,
[tex]\begin{gathered} \frac{1}{2}mv^2=mgh \\ m\text{ is canceled} \\ so \\ \frac{1}{2}v^2=gh \\ \text{divide both sides by g} \\ \frac{\frac{1}{2}v^2}{g}=\frac{gh}{g} \\ \frac{v^2}{2g}=h \\ \end{gathered}[/tex]but h is
[tex]h=l-l\sin (\emptyset)[/tex]hence,replacing
[tex]\begin{gathered} l-l\sin (\emptyset)=\frac{v^2}{2g} \\ now,\text{ solve for angle(}\emptyset) \\ subtract\text{ l in both sides} \\ l-l\sin (\emptyset)-l=\frac{v^2}{2g}-l \\ l\sin (\emptyset)=\frac{v^2}{2g}-l \\ \text{divide both sides by l} \\ \frac{l\sin (\emptyset)}{l}=\frac{\frac{v^2}{2g}-l}{l} \\ \sin (\emptyset)=\frac{\frac{v^2}{2g}-l}{l} \\ \text{ inverse sin function} \\ \sin ^{-1}(\sin (\emptyset)=\sin ^{-1}\frac{\frac{v^2}{2g}-l}{l} \\ \emptyset=\sin ^{-1}(\frac{\frac{v^2}{2g}-l}{l}) \end{gathered}[/tex]therefore, the answer is
[tex]\begin{gathered} \emptyset=\sin ^{-1}(\frac{\frac{v^2}{2g}-l}{l}) \\ \text{where} \\ \emptyset\text{ is the angle} \\ l\text{ is the length of the pendulum} \\ \text{v is the velocity } \\ and\text{ g is the acceleation of gravity} \end{gathered}[/tex]I hope this helps you