We need to find the length of the line segments AB and CD
the formula to find the distance between two points ( x1 , y1 ) and ( x2 , y2 ) is :
[tex]d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}[/tex]The distance of the line segment AB:
A(-5,11) , B(3,5)
so,
[tex]d_{AB}=\sqrt[]{(3--5)^2+(5-11)^2}=\sqrt[]{8^2+(-6)^2}=\sqrt[]{64+36}=\sqrt[]{100}=10[/tex]The distance of the line segment CD:
C(9,3), D(2,10)
[tex]d_{CD}=\sqrt[]{(2-9)^2+(10-3)^2}=\sqrt[]{(-7)^2+7^2}=\sqrt[]{49+49}=\sqrt[]{98}[/tex]Compare the lengths:
[tex]\begin{gathered} \sqrt[]{98}<\sqrt[]{100} \\ \sqrt[]{98}<10 \end{gathered}[/tex]So, the line segment AB is greater then the line segment CD
So, the longer line segment is AB