We know that the distribution is normal with mean 17 and standard deviation 4; in this case we need to find:
[tex]P(X\ge18)[/tex]Using the properties of the binomial distribution this is equal to:
[tex]P(X\ge18)=1-P(X\leq18)[/tex]To find the probability on the right we will standardize the distribution, then we need the z-score which is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]Then we have:
[tex]\begin{gathered} P(X\geqslant18)=1-P(X\leqslant18) \\ =1-P(X\leq\frac{18-17}{4}) \\ =1-P(X\leq0.25) \end{gathered}[/tex]Using a standard normal distribution table we have:
[tex]\begin{gathered} P(X\geqslant18)=1-P(X\leqslant18) \\ =1-P(X\leq\frac{18-17}{4}) \\ =1-P(X\leq0.25) \\ =1-0.5987 \\ =0.4013 \end{gathered}[/tex]Therefore, the probability that the trial lasts at least 18 days is 0.4013