Respuesta :

The three basic trigonometric ratios for a specific angle θ are sine, cosine, and tangent:

[tex]\begin{gathered} \sin (\theta)=\frac{\text{ Opposite side}}{\text{ Hypotenuse}} \\ \cos (\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ \tan (\theta)=\frac{\text{Opposite side}}{\text{Adjacent side}} \end{gathered}[/tex]

So, in this case, we have:

First ratio

[tex]\begin{gathered} \theta=J \\ \text{ Opposite side }=\sqrt[]{33} \\ \text{ Hypotenuse }=17 \\ \sin (\theta)=\frac{\text{ Opposite side}}{\text{ Hypotenuse}} \\ $\boldsymbol{\sin (J)=\frac{\sqrt[]{33}}{17}}$ \end{gathered}[/tex]

Second ratio

[tex]\begin{gathered} \theta=K \\ \text{ Adjacent side }=\sqrt[]{33} \\ \text{ Hypotenuse }=17 \\ \cos (\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ $\boldsymbol{\cos (K)=\frac{\sqrt[]{33}}{17}}$ \end{gathered}[/tex]

Finally, as we can see, sin(J) and cos(K) are equal.

Ver imagen TeyahQ125950
ACCESS MORE
EDU ACCESS
Universidad de Mexico