Respuesta :

We are given the following functions:

[tex]\begin{gathered} f(x)=\frac{1}{3}x-1 \\ g(x)=2x+4 \end{gathered}[/tex]

Two find the point of interception of the two functions we must first equate both functions, like this:

[tex]f(x)=g(x)[/tex]

replacing the values:

[tex]\frac{1}{3}x-1=2x+4[/tex]

Now we solve for "x" first by subtracting "2x" on both sides.

[tex]\frac{1}{3}x-2x-1=2x-2x+4[/tex]

Solving the operations:

[tex]-\frac{5}{3}x-1=4[/tex]

Now we add "1" on both sides:

[tex]-\frac{5}{3}x-1+1=4+1[/tex]

Solving the operations:

[tex]-\frac{5}{3}x=5[/tex]

Now we multiply both sides by 3

[tex]-5x=15[/tex]

Now we divide both sides by -5

[tex]x=\frac{15}{-5}=-3[/tex]

Now we replace the value of "x" in any of the two functions. Replacing in g(x), we get:

[tex]g(-3)=2(-3)+4[/tex]

Solving the operations:

[tex]g(-3)=-6+4=-2[/tex]

Therefore, the function intercept at the point (x,y)=(-3,-2)

RELAXING NOICE
Relax