Step 1
Given;
[tex]\begin{gathered} r_1r_2=\frac{c}{a} \\ r_1=\frac{-b+\sqrt{b^2-4ac}}{2a} \\ r_2=\frac{-b-\sqrt{b^2-4ac}}{2a} \end{gathered}[/tex]
Step 2
Multiply both terms and fill in the blanks as the steps go on
[tex]\begin{gathered} r_1r_2=(\frac{-b+\sqrt{b^2-4ac}}{2a})\times(\frac{-b-\sqrt{b^2-4ac}}{2a}) \\ First\text{ blank=-b} \end{gathered}[/tex][tex]\begin{gathered} 2\text{a\lparen2a\rparen =4a}^2 \\ Hence, \\ =\frac{(-b+\sqrt{b^2-4ac})\times(-b-\sqrt{b^2-4ac})}{4a^2} \\ Second\text{ blank=-b} \end{gathered}[/tex][tex]\begin{gathered} Expand\text{ the numerator using difference of two squares; \lparen a}^2-b^2)=(a+b)(a-b) \\ a=-b,b=\sqrt{b^2-4ac} \\ (-b+\sqrt{b^2-4ac})(-b-\sqrt{b^2-4ac})=(-b)^2-(\sqrt{b^2-4ac})^2 \\ =\frac{(-b)^2-(\sqrt{b^2-4ac})^2}{4a^2} \\ \end{gathered}[/tex]
The third blank will be;
[tex]-b^[/tex][tex]\begin{gathered} =\frac{b^2-(b^2-4ac)}{4a^2} \\ Fourth\text{ blank=b}^2 \end{gathered}[/tex][tex]\begin{gathered} =\frac{4ac}{4a^2} \\ =\frac{c}{a} \\ Last\text{ blank = 4ac} \end{gathered}[/tex]