For 15-20, solve each equation. Identifyany extraneous roots. I don’t need explanations, i’ve completed it until: x^3+6x^2+4x+24=0

we have the equation
[tex](8x-16)^{\frac{1}{3}}=x+2[/tex]elevated to the cubic on both sides
[tex](8x-16)=(x+2)^3[/tex]Expand the right side
[tex]\begin{gathered} (8x-16)=(x+2)^2(x+2) \\ (8x-16)=(x^2+4x+4)^(x+2) \\ (8x-16)=x^3+2x^2+4x^2+8x+4x+8 \\ 8x-16=x^3+6x^2+12x+8 \\ x^3+6x^2+12x+8-8x+16=0 \\ x^3+6x^2+4x+24=0 \end{gathered}[/tex]For the cubic equation
For x=-6
the equation is equal to zero
so
x=-6 is a root
Divide the cubic function by the factor (x+6)
x^3+6x^2+4x+24 : (x+6)
x^2+4
-x^3-6x^2
-------------------------
4x+24
-4x-24
--------------
0
therefore
x^3+6x^2+4x+24=(x+6)(x^2+4)
Solve the quadratic equation
x^2+4=0
x^2=-4
x=2i and x=-2i
the solutions are
x=-6
x=2i
x=-2i
Verify in the original equation
For x=-6
[tex]\begin{gathered} \sqrt[3]{(8(-6)-16)}=-6+2 \\ -4=-4\text{ ----> is true} \end{gathered}[/tex]