Given two of the side lengths, check all possible lengths for the third side.45cm and 9cm

47 cm and 39 cm
Explanation
the theorem states that the sum of any two sides of a triangle is greater than or equal to the third side; in symbols, a + b > c
so
Step 1
Let
[tex]\begin{gathered} \text{side}1=45\text{ cm} \\ \text{side}2=9\text{ cm} \\ \text{side}3=\text{ x} \end{gathered}[/tex]hence
a)
[tex]\begin{gathered} \text{side}1+\text{side2}>x \\ replace \\ 45+9>x \\ 54>x \\ so \\ \text{side}3<54\rightarrow\lbrace35,47,39\rbrace \end{gathered}[/tex]Step 2
b)
[tex]\begin{gathered} \text{side}1+\text{x}>\text{side}2 \\ replace \\ 45+x>9 \\ \text{subtract 45 in both sides} \\ so \\ 45+x-45>9-45 \\ x>-36\rightarrow all\text{ the options} \end{gathered}[/tex]Step 3
[tex]\begin{gathered} \text{x+side2}>\text{side}1 \\ replace \\ x+9>45 \\ \text{subtract 9 in both sides} \\ so \\ x+9-9>45-9 \\ x>36\rightarrow\lbrace39,47,54,58\rbrace \end{gathered}[/tex]hence
the solutions must fit:
[tex]\begin{gathered} \text{side}3<54\rightarrow\lbrace35,47,39\rbrace \\ x>-36\rightarrow all\text{ the options}\lbrace35,58,47,54,39\rbrace \\ x>36 \\ 36therefore, the solution is the intersection of those sets[tex]\lbrace47cm,39cm\rbrace[/tex]47 cm and 39 cm
I hope this helps you