Given:
a)
[tex]\begin{gathered} f(x)=4x-2 \\ g(x)=\frac{x+2}{24} \end{gathered}[/tex]To verify two functions are inverses of each other,
Step 1: Plug g(x) into f(x),
[tex]\begin{gathered} \text{ To prove : }f\lbrack g(x)\rbrack=x \\ f\lbrack g(x)\rbrack=f\lbrack\frac{x+2}{24}\rbrack \\ =4(\frac{x+2}{24})-2 \\ =\frac{x+2}{6}-2 \\ =\frac{x+2-12}{6} \\ =\frac{x-10}{6}\ne x \\ It\text{ implies that f(x) and g(x) are not inverses of each other.} \end{gathered}[/tex]b)
[tex]\begin{gathered} f(x)=-3x-9 \\ g(x)=-13x-3 \end{gathered}[/tex]Step 1: plug g(x) into f(x)
[tex]\begin{gathered} To\text{ prove : }f\lbrack g(x)\rbrack=x \\ f\lbrack g(x)\rbrack=f(-13x-3) \\ =-3(-13x-3)-9 \\ =39x+9-9 \\ =39x \\ \ne x \\ It\text{ implies that f(x) and g(x) are not inverses of each other.} \end{gathered}[/tex]