Respuesta :

Given the expression:

[tex](\frac{1}{2}(cos(\frac{\pi}{5})+isin(\frac{\pi}{5})))^5[/tex]

Let's select the expresssion which is equivalent to the given expression.

Apply exponential property to simplify the expression.

We have:

[tex](\frac{1}{2}(cos(\frac{\pi}{5})+\imaginaryI s\imaginaryI n(\frac{\pi}{5})))^5[/tex]

Apply De Moivre's Theorem:

[tex](r(cos\theta+isin\theta))^n=r^n(cos(\theta n)+isin(\theta n))[/tex]

Thus, we have:

[tex]\begin{gathered} ((\frac{1}{2})^5(cos(\frac{\pi}{5}*5))+isin(\frac{\pi}{5}*5)) \\ \\ \frac{1}{32}(cos(\pi)+isin(\pi)) \end{gathered}[/tex]

ANSWER:

[tex]\frac{1}{32}(cos(\pi)+\imaginaryI s\imaginaryI n(\pi))[/tex]

RELAXING NOICE
Relax