We are given:
[tex]\begin{gathered} f(-2)\text{ = -3 and} \\ g(-2)\text{ = 5} \end{gathered}[/tex](a) (f + g)(-2):
Recall that:
[tex](f+g)(x)\text{ = f(x) + g(x)}[/tex]Applying this:
[tex]\begin{gathered} (f+g)(-2)\text{ = f(-2) + g(-2)} \\ =\text{ -3 + 5} \\ =\text{ 2} \end{gathered}[/tex]Hence: (f + g)(-2) = 2
(b) (f/g)(-2):
Recall that:
[tex](\frac{f}{g})(x)\text{ = }\frac{f(x)}{g(x)}[/tex][tex]\begin{gathered} (\frac{f}{g})(-2)\text{ = }\frac{f(-2)}{g(-2)} \\ =\text{ }\frac{-3}{5} \\ =\text{ -}\frac{3}{5} \end{gathered}[/tex]Hence, (f/g)(-2) = -3/5