A committee of 6 students is to be selected from 15 students in a fraternity.
a. In how many ways can this be done?
b. In how many ways can the group that will not take part be chosen?
Part a
Find out the combination 15C6
[tex]15C6=\frac{n!}{r!(n-r)!}[/tex]where
n=15
r=6
substitute
[tex]\begin{gathered} 15C6=\frac{15!}{6!(15-6)!} \\ 15C6=\frac{15!}{6!(9!)!} \end{gathered}[/tex]15C6=5,005
The answer part a is 5,005 ways
Part b
Find out 15C9
because
not take part to be chosen=15-6=9
n=15
r=9
substitute
[tex]\begin{gathered} 15C9=\frac{15!}{9!(15-9)!} \\ 15C9=\frac{15!}{9!(6)!} \end{gathered}[/tex]15C9=5,005 ways