The domain of a function is all the x values that x can take.
We have the next function:
[tex]f(x)=\frac{x-3}{x^2+9x-22}[/tex]
Now, we need to find when the denominator is undefined.
The denominator can be 0.
So equal the whole expression to 0.
Therefore:
[tex]x^2+9x-22=0[/tex]
To find the x value, use the quadratic formula, which is given by:
[tex]x=\frac{-b\pm\sqrt[2]{b^2-4ac}}{2a}[/tex]
Replace this values using a=1, b=9 and c= -22
[tex]x=\frac{-9\pm\sqrt[]{9^2-4(1)(-22)}}{2(1)}[/tex][tex]x=\frac{9\pm13}{2}[/tex]
Then x will take two values:
[tex]x_1=\frac{-9-13}{2}=\frac{-22}{2}=-11_{}[/tex][tex]x_2=\frac{-9+13}{2}=\frac{4}{2}=-2_{}[/tex]
So, when x= -11 and x=2, the function is undefined.
Finally, we can find the domain: (-inf, -11) U (-11,2) U (2, inf)