I'm stuck on this problem trying to figure it out.


Given:
The confidence level is, c = 95% = 0.95.
The value of standard deviation is, σ = 3.6.
The value of sample size is, n = 100.
The objective is to find the margin of error.
Explanation:
The general formula to find the margin of error is,
[tex]\text{E}=z_c\times\frac{\sigma}{\sqrt[]{n}}\text{ .. . . . (1)}[/tex]From the critical value table, the value z for c = 95% is,
[tex]z_c=1.96[/tex]To find E:
Now, substitute the obtained values in equation (1).
[tex]\begin{gathered} \text{E}=1.96\times\frac{3.6}{\sqrt[]{100}} \\ =1.96\times\frac{3.6}{10} \\ \approx0.706 \end{gathered}[/tex]Hence,