Respuesta :

Given:

[tex]\frac{3}{4}(x-2)\text{ }<\text{ x -2}[/tex]

Opening the bracket:

[tex]\frac{3x}{4}\text{ - }\frac{6}{4}\text{ }<\text{ x - 2}[/tex]

Collect like terms:

[tex]\begin{gathered} \frac{3x}{4}-x\text{ }<\text{ }\frac{6}{4}\text{ - 2} \\ \frac{3x-4x}{4}\text{ }<\text{ }\frac{6-8}{4} \\ -\frac{x}{4}\text{ }<\text{ }\frac{-2}{4} \end{gathered}[/tex]

Solving for x:

[tex]\begin{gathered} -\frac{x}{4}\text{ }<\text{ }\frac{-2}{4} \\ -x\text{ }<\text{ -2} \\ x\text{ > 2} \end{gathered}[/tex]

The solution in interval notation:

[tex](2\text{ , }\infty\text{ )}[/tex]

The solution on a graph:

The solution on a number line:

Ver imagen KayleN1243
Ver imagen KayleN1243
RELAXING NOICE
Relax