Given equation of the circle is
[tex](x-5)^2+(y+3)^2=9[/tex]Now, for the point P,
[tex]\begin{gathered} (2-5)^2+(-1+3)^2=9+4 \\ =13>9 \end{gathered}[/tex]For the point Q,
[tex]\begin{gathered} (2-5)^2+(-6+3)^2=9+9 \\ =18>9 \end{gathered}[/tex]For the point R,
[tex](5-5)^2+(-2+3)^2=1<9[/tex]Hence, the point R is inside the circle.
So, the correct answer is (c)