[tex]f(t)=1000(1.06)^t[/tex]
As the initial deposited is $1000
1. In how many years will the money in the acount be 2000
[tex]\begin{gathered} f(t)=2000 \\ \\ 2000=1000(1.06)^t \end{gathered}[/tex]
To solve for t:
-Divide both sides of the equation into 1000
[tex]\begin{gathered} \frac{2000}{1000}=\frac{1000(1.06)^t}{1000} \\ \\ 2=(1.06)^t \end{gathered}[/tex]
- As:
[tex]\begin{gathered} a^b=c \\ \text{Log}_ac=b \end{gathered}[/tex][tex]\begin{gathered} (1.06)^t=2 \\ \log _{1.06}2=t \end{gathered}[/tex]
-As:
[tex]\log _ac=\frac{\log c}{\log a}[/tex][tex]\log _{1.06}2=\frac{\log 2}{\log 1.06}=11.89[/tex]Then, after 11.89 or approximately 12 years the money will be 2000.---------------------------
To find the amount of money after 10 years you substitute the t in the equation for 10 and evaluate the function:
[tex]\begin{gathered} f(t)=1000(1.06)^t \\ f(10)=1000(1.06)^{10} \\ f(10)=1000(1.7908)=1790.8 \end{gathered}[/tex]Then, after 10 years the amount of money in the account is $1790.8-----------------------
The general equation for a compounded interest is:
[tex]f(t)=C(1+i)^t[/tex]
Where C is the initial deposit
i is the interest (in decimal)
As you have:
[tex]1+i=1.06[/tex]
the interest in decimal will be:
[tex]\begin{gathered} 1.06-1=i \\ 0.06=i \end{gathered}[/tex]Then, the interest rate is: 6%[tex]\begin{gathered} i\cdot100 \\ =0.06\cdot100 \\ =6 \end{gathered}[/tex]