SOLUTION
Given the question in the question tab, the following are the solution steps to answer the question.
STEP 1: Get the monthly income from the annual income
[tex]\begin{gathered} \text{Annual net income}=\text{\$}68,939 \\ \text{Annual implies yearly and a year has 12 months, therefore,} \\ \text{Monthly income}=\frac{\text{\$}68,939}{12}=\text{\$}5774.916667\text{ } \\ \\ \text{Morse has an income of \$5774.916667 per month} \end{gathered}[/tex]STEP 2: Get Morse's monthly expenses
[tex]\begin{gathered} \text{Annual expense fe}e=\text{\$549} \\ \text{Monthly expense fe}e=\frac{\text{\$}549}{12}=\text{\$}45.75\text{ per month} \\ \text{Fixed expenses=\$1765} \\ \text{Living expenses=\$641} \\ \\ \text{Total monthly expenses will be:} \\ \text{\$}45.75+\text{\$1765}+\text{\$641}=\text{\$}2451.75 \end{gathered}[/tex]STEP 3: Calculate Morse's budget
[tex]\begin{gathered} \text{Monthly budget}=\text{Monthly income-Total Monthly expenses} \\ \text{Monthly budget}=\text{\$5774.916667}-\text{\$}2451.75 \\ \text{Monthly budget=\$3293.166667} \\ \text{Monthly budget}\approx\text{\$}3293\text{ to the nearest whole number.} \end{gathered}[/tex]Since the there is a positive return from the subtraction above, this implies that Morse has a surplus of 3293 dollars per month