Solution
For this case we can use the following formula:
[tex]A=P\cdot\frac{r(1+r)^n}{(1+r)^n-1}[/tex]For this case
P= 1960
r= 0,09/12= 0.0075
n= 4*12= 48
Replacing we got:
[tex]A=1960\cdot\frac{0.0075(1+0.0075)^{48}}{(1+0.0075)^{48}-1}=48.77[/tex]then the answer for this case would be:
48.77$
Solution alternative proposed
[tex]\frac{P+I}{n}[/tex]P= 1960 $
I = 0.09*1960*4= 705.6 $
n = 12*4years= 48months
Replacing we got:
[tex]\frac{1960+705.6}{48}=55.53[/tex]