Respuesta :

Given:

a)

Consider the triangles ABC and ADC.

AB=DC

[tex]\angle\text{ABC}=\angle\text{ADC}[/tex]

The common side is AC.

Using the two-column method.

[tex]1.AB=DCand\angle ABC=\angle ADC\ldots\ldots\ldots.1.\text{given}[/tex][tex]2.AC\cong AC\ldots\ldots.2.\text{Reflexive property }[/tex][tex]3.\Delta\text{ABC}\cong\Delta ADC\ldots\ldots.3.\text{SAS potulates}[/tex]

b)

Consider the triangle.

[tex]1.\angle DEF\cong\angle KJLandDE=JL\ldots\ldots1.given[/tex]

Using triangle sum property, we get

[tex]\angle EDF+\angle EFD+\angle DEF=180^o[/tex]

[tex]\angle EDF+70^o+60^o=180^o[/tex][tex]\angle E\text{DF}=50^o[/tex][tex]2.\angle EDE\cong\angle JLK\ldots\ldots..2.triangel\text{ sum property.}[/tex][tex]3.\Delta\text{DEF}\cong\Delta\text{KJL}\ldots\ldots\text{.}\mathrm{}\text{ASA postulates}[/tex]

Ver imagen KasaundraF420807
Ver imagen KasaundraF420807
RELAXING NOICE
Relax