Respuesta :

Let:

A1 = Area of triangle A

A2 = Area of triangle B

Since the dimensions of triangle B are twice the dimensions of triangle A, then:

[tex]\begin{gathered} h2=2h1 \\ b2=2b1 \end{gathered}[/tex]

Where:

h1 = height of triangle A

h2 = height of triangle B

b1 = base of triangle A

b2 = base of triangle B

The area of the triangle B is given by:

[tex]\begin{gathered} A2=\frac{b2\cdot h2}{2} \\ A2=\frac{(2b1\cdot2h1)}{2} \\ A2=2b1\cdot h1 \\ where \\ b1\cdot h1=2A1 \\ b1\cdot h1=2(15\operatorname{cm})=30cm^2 \\ A2=2(30cm^2) \\ A2=60cm^2 \end{gathered}[/tex]

Answer:

60 cm²

RELAXING NOICE
Relax