polygon ABCDE is shown in the coordinate plane find the area of the figure

Given the shown figure
Points
A( 8 , 3 )
B( - 2 , -1)
C( - 5 , 3)
D( -5 , -5)
E( 0, -5)
Segments
CD= 5+ 3 = 8
DE= 5
[tex]AB=\sqrt{(8+2)^2+(3+1)^2}[/tex][tex]AB=\sqrt{116}=2\sqrt{29}[/tex][tex]BC=\sqrt{(-5+2)^2+(3+1)^2}[/tex][tex]BC=\sqrt{9+16}[/tex][tex]BC=\sqrt{25}=5[/tex][tex]AE=\sqrt{(0+8)^2+(-5-3)^2}[/tex][tex]AE=\sqrt{64+64}[/tex][tex]AE=\sqrt{128}=8\sqrt{2}[/tex]we can separate the figure into 5 related figures as follows
then the area is the sum of
[tex]A=(4*3)+(2*4)+(6)+(8)+(5.5)[/tex][tex]A=39.5[/tex]A=39.5u^2