For a sample of 15 (n=15) you get the next P(X=x) in the binomial probabilities table:
As you have a p=0.55 (55%) Use the column of 0.55
a. At most 5
[tex]P(X\le5)[/tex]To find the probability that x ≤ 5:
-Identify in the table the probability when x=5, x=4, x=3, x=2, x=1 and x=0:
-Use the next formula to find P(x ≤ 5):
[tex]\begin{gathered} P(X\le5)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5) \\ \end{gathered}[/tex][tex]\begin{gathered} P(X\le5)=0.000+0.000+0.001+0.006+0.025+0.077 \\ P(X\le5)=0.109 \end{gathered}[/tex]b. 6 to 9:
[tex]P(6\le X\le9)_{}[/tex]-Identify in the table the probability when x=6, x=7, x=8, x=9:
[tex]undefined[/tex]