Given:
There are given that the initial payment is $6100 and the interest is 2.9% compounded monthly.
Explanation:
According to the question:
We need to find the monthly payment.
Then,
To find the monthly payment, we will use the compound interest monthly formula:
So,
From the formula:
[tex]A=P(1+\frac{r}{n})^{nt}-P[/tex]Where,
[tex]\begin{gathered} P=6100 \\ r=2.9\%=0.029 \\ t=5 \\ n=12 \end{gathered}[/tex]Then,
Put all the values into the above formula:
So,
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt}-P \\ A=6100(1+\frac{0.029}{12})^{12(5)}-6100 \end{gathered}[/tex]So,
[tex]\begin{gathered} A=6100(1+\frac{0.029}{12})^{12(5)}-6100 \\ A=6100(1+0.002)^{60}-6100 \\ A=6100(1.002)^{60}-6100 \\ A=6100(1.127)-6100 \\ A=6874.7-6100 \\ A=774.7 \end{gathered}[/tex]Final answer:
Hence, the value of the monthly payment is $775.