ANSWER :
Cylinder Vase
EXPLANATION :
Recall the volume formulas :
[tex]\begin{gathered} \text{ Cylinder :} \\ V=\pi r^2h \\ \\ \text{ Cone :} \\ V=\frac{1}{3}\pi r^2h \\ \\ \text{ Sphere :} \\ V=\frac{4}{3}\pi r^3 \end{gathered}[/tex]
Solve the volumes of each solid :
Note that the radius is half of the diameter.
[tex]\begin{gathered} \text{ Cylinder with diameter of 10 cm, so r = 5 cm and the height is h = 40 cm :} \\ V=\pi r^2h \\ V=\pi(5)^2(40)=1000\pi cm^3 \\ \\ \text{ Cone with diameter of 16 cm, so r = 8 cm and the height is h = 45 cm :} \\ V=\frac{1}{3}\pi r^2h \\ V=\frac{1}{3}\pi(8)^2(45)=960cm^3 \\ \\ \text{ Sphere with diameter of 18 cm, so r = 9 cm :} \\ V=\frac{4}{3}\pi r^3 \\ V=\frac{4}{3}\pi(9)^3=972cm^3 \end{gathered}[/tex]
The vase that holds the most water is the vase with the largest volume.
And that's Cylinder vase