Using the triangle sum theorem, which states the sum of the three interior angles in a triangle is always 180. Therefore:
[tex]\begin{gathered} m\angle R+m\angle S+m\angle T=180 \\ 31+x+4+3x+9=180 \\ add_{\text{ }}like_{\text{ }}terms \\ 44+4x=180 \\ Solve_{\text{ }}for_{\text{ }}x \\ 4x=180-44 \\ 4x=136 \\ x=\frac{136}{4} \\ x=34 \end{gathered}[/tex]Now that we know the value of x, we will be able to know the value of S and T, so:
[tex]\begin{gathered} m\angle S=x+4=34+4=38 \\ m\angle T=3x+9=3(34)+9=111 \end{gathered}[/tex]