Answer:
[tex]\frac{3[3-4\cos(2x)+\cos(4x)]}{4}[/tex]Explanation:
Given the trigonometric expression:
[tex]6\sin ^4x[/tex]By the power-reducing formula for the fourth power:
[tex]\sin ^4x=\frac{3-4\cos(2x)+\cos(4x)}{8}[/tex]Therefore:
[tex]\begin{gathered} 6\sin ^4x=6\mleft[\frac{3-4\cos(2x)+\cos(4x)}{8}\mright] \\ =\frac{3}{4}\mleft[3-4\cos (2x)+\cos (4x)\mright] \\ \implies6\sin ^4x=\frac{3\lbrack3-4\cos (2x)+\cos (4x)\rbrack}{4} \end{gathered}[/tex]An equivalent expression is:
[tex]\frac{3[3-4\cos(2x)+\cos(4x)]}{4}[/tex]