78.6 grams of O2 and 67.3 grams of F2 are placed in a container with a volume of 40.6 L. Find the total pressure if the gasses are at a temperature of 43.13 °C.

Respuesta :

1) List the known and unknown quantities.

Sample: O2.

Mass: 78.6 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

Sample: F2.

Mass: 67.3 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

2) Find the pressure of O2.

2.1- List the known and unknown quantities.

Sample: O2.

Mass: 78.6 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).

2.2- Convert grams of O2 to moles of O2.

The molar mass of O2 is 31.9988 g/mol.

[tex]mol\text{ }O_2=78.6\text{ }g*\frac{1\text{ }mol\text{ }O_2}{31.9988\text{ }g\text{ }O_2}=2.46\text{ }mol\text{ }O_2[/tex]

2.3- Set the equation.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)

[tex]PV=nRT[/tex]

2.4- Plug in the known quantities and solve for P.

[tex](P)(40.6\text{ }L)=(2.46\text{ }mol\text{ }O_2)(0.082057\text{ }L*atm*K^{-1}*mol^{-1})(316.28\text{ }K)[/tex]

.

[tex]P_{O_2}=\frac{(2.46\text{ }mol\text{ }O_2)(0.082057\text{ }L*atm*K^{-1}*mol^{-1})(316.28\text{ }K)}{40.6\text{ }L}[/tex][tex]P_{O_2}=1.57\text{ }atm[/tex]

The pressure of O2 is 1.57 atm.

3) Find the pressure of F2.

3.1- List the known and unknown quantities.

Sample: F2.

Mass: 67.3 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).

3.2- Convert grams of F2 to moles of F2.

The mmolar mass of F2 is 37.9968 g/mol.

[tex]mol\text{ }F_2=67.3\text{ }g\text{ }F_2*\frac{1\text{ }mol\text{ }F_2}{37.9968\text{ }g\text{ }F_2}=1.77\text{ }mol\text{ }F_2[/tex]

3.3- Set the equation.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)

[tex]PV=nRT[/tex]

3.4- Plug in the known quantities and solve for P.

[tex](P)(40.6\text{ }L)=(1.77\text{ }mol\text{ }F_2)(0.082057\text{ }L*atm*K^{-1}*mol^{-1})(316.28\text{ }K)[/tex]

.

[tex]P_{F_2}=\frac{(1.77molF_2)(0.082057L*atm*K^{-1}*mol^{-1})(316.28K)}{40.6\text{ }L}[/tex][tex]P_{F_2}=1.13\text{ }atm[/tex]

The pressure of F2 is 1.13 atm.

4) The total pressure.

Dalton's law - Partial pressure. This law states that the total pressure of a gas is equal to the sum of the individual partial pressures.

4.1- Set the equation.

[tex]P_T=P_A+P_B[/tex]

4.2- Plug in the known quantities.

[tex]P_T=1.57\text{ }atm+1.13\text{ }atm[/tex][tex]P_T=2.7\text{ }atm[/tex]

The total pressure in the container is 2.7 atm.

ACCESS MORE
EDU ACCESS
Universidad de Mexico