Respuesta :

SOLUTION

We want to get a degree 3 polynomial with zeros at

[tex]\begin{gathered} x=-3 \\ x=-4 \\ x=-3 \\ \text{and y-intercept of (0, 12)} \end{gathered}[/tex]

This polynomial can be interpreted as

[tex]\begin{gathered} x+3=0 \\ x+4=0 \\ x+3=0 \end{gathered}[/tex]

Writing as a function we have

[tex]\begin{gathered} y=a(x+3)(x+4)(x+3)_{} \\ y=a(x+3)(x+3)(x+4)_{} \\ y=a(x+3)^2(x+4) \end{gathered}[/tex]

So, now we need to find the value of a from the point (0, 12), so here x = 0 and y = 12, we have

[tex]\begin{gathered} y=a(x+3)^2(x+4) \\ 12=a(0+3)^2(0+4) \\ 12=a(3)^2(4) \\ 12=a\times9\times4 \\ 12=36a \\ a=\frac{12}{36} \\ a=\frac{1}{3} \end{gathered}[/tex]

Placing the value of a into the equation

[tex]y=a(x+3)^2(x+4)[/tex]

We have

[tex]undefined[/tex]

RELAXING NOICE
Relax