Answer;
[tex]\begin{gathered} \text{Length = 38 ft} \\ \text{Width = 13 ft} \end{gathered}[/tex]Explanation;
Here, we want to get the length and width of the rectangle
Let the length of the rectangle be x ft
Let the width of the rectangle be w ft
From the question, the length is 12 ft more than twice the width
We have this as;
[tex]l\text{ = 12 + 2w}[/tex]Mathematically, the formula for the perimeter of a rectangle is;
[tex]P\text{ = 2(l+w)}[/tex]Now, substitute the value for l above and perimeter from the question
We have that as;
[tex]\begin{gathered} 102\text{ = 2(12+2w+w)} \\ 51\text{ = 12 + 3w} \\ 3w\text{ = 51-12} \\ 3w\text{ = 39} \\ w\text{ = }\frac{39}{3} \\ w\text{ = 13 ft} \end{gathered}[/tex]Recall;
[tex]\begin{gathered} l\text{ = 12+2w} \\ l\text{ = 12+2(13)} \\ l\text{ = 12+26} \\ l\text{ = 38 ft} \end{gathered}[/tex]