Answer:
The formula to calculate the amount after being compounded is given below as
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ P=4000 \\ r=9\%=\frac{9}{100}=0.09 \\ n=12 \\ t=8 \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ A=4000(1+\frac{0.09}{12})^{12\times8} \\ A=4000(1+0.0075)^{96} \\ A=4000(1.0075)^{96} \\ A=8195.68 \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow8,195.68[/tex]