1.954 N
Explanation
Step 1
Diagram:
Step 2
to avoid the people thrown off into space the centripetal force has to be greater than his weight. Thus, we have to calculate the magnitudes of this forces:
so
[tex]\begin{gathered} F_c=ma_c \\ W=mg \end{gathered}[/tex]the centripetal acceleration is given by:
[tex]a_c=\frac{v^2}{r}[/tex]let, radius= 6450000 meters
Period = 24 hours= 24*3600 s= 86400 s
and
[tex]\begin{gathered} v=\frac{distancetraveled}{T(period)}=\frac{2\pi r}{T} \\ v=\frac{2*\pi *6450000m}{24*3600\text{ s}}=\frac{40526.54}{86400}=469.057\text{ }\frac{m}{s} \end{gathered}[/tex]Step 2
a)find the centripetal force:
[tex]\begin{gathered} F_{c}=ma_{c} \\ F_c=m\frac{v^2}{r} \\ F_c=57.3\text{ Kg}\frac{(469.057\frac{m}{s})^2}{6450000\text{ m}} \\ F_c=1.954\text{ N} \end{gathered}[/tex]b) finally we can conclude
The centripetal force needed is 1.954 N