Respuesta :

Question:

Solution:

We can apply the Law of Cosines. This law establishes the following: consider the following triangle:

then, we can find the side C by the following equation:

[tex]c\text{ = }\sqrt[]{a^2+b^2-2ab\cos \gamma}[/tex]

in this case, we have that:

[tex]c\text{ = x}[/tex]

[tex]a\text{ =30}[/tex]

[tex]b\text{ =}23[/tex]

and

[tex]\gamma=\text{ 65}[/tex]

Replacing these data in the equation of the law of cosines we obtain:

[tex]x\text{ = }\sqrt[]{30^2^{}+23^2-2(30)(23)\cos (65)\text{ }}\text{ }[/tex]

this is equivalent to:

[tex]x\text{ = }\sqrt[]{30^2^{}+23^2-2(30)(23)\cos(65)\text{ }}=\text{ 29.08 }\approx29.1[/tex]

then, the correct answer is:

[tex]x\text{ =}29.1[/tex]

Ver imagen HanifahZ85857
Ver imagen HanifahZ85857
RELAXING NOICE
Relax