Question:
Solution:
We can apply the Law of Cosines. This law establishes the following: consider the following triangle:
then, we can find the side C by the following equation:
[tex]c\text{ = }\sqrt[]{a^2+b^2-2ab\cos \gamma}[/tex]in this case, we have that:
[tex]c\text{ = x}[/tex][tex]a\text{ =30}[/tex][tex]b\text{ =}23[/tex]and
[tex]\gamma=\text{ 65}[/tex]Replacing these data in the equation of the law of cosines we obtain:
[tex]x\text{ = }\sqrt[]{30^2^{}+23^2-2(30)(23)\cos (65)\text{ }}\text{ }[/tex]this is equivalent to:
[tex]x\text{ = }\sqrt[]{30^2^{}+23^2-2(30)(23)\cos(65)\text{ }}=\text{ 29.08 }\approx29.1[/tex]then, the correct answer is:
[tex]x\text{ =}29.1[/tex]