The function f(x) = - 4x ^ 3 + 27.24x ^ 2 + 220.4352x - 4.76 is increasing on the open interval

Given:
The function is:
[tex]f(x)=-4x^3+27.24x^2+220.4352x-4.76[/tex]Find:
(a)
The increase in the open interval
(b)
The decrease in the open interval
(c)
The local maximum
Explanation-:
The function is:
[tex]f(x)=-4x^3+27.24x^2+220.4352x-4.76[/tex]The first derivative of a function is:
[tex]f^{\prime}(x)=-12x^2+54.58x+220.4352[/tex]For increasing at x
[tex]\begin{gathered} f^{\prime}(x)>0 \\ \\ f(x)\text{ Increasing at }x \end{gathered}[/tex]For decreasing at x
[tex]\begin{gathered} f^{\prime}(x)<0 \\ \\ f(x)\text{ is decreasing at }x \end{gathered}[/tex]f'(x) is zero at a critical point:
[tex]\begin{gathered} f^{\prime}(x)=0 \\ \\ -12x^2+54.58x+220.4352=0 \\ \\ x=-\frac{129}{50}\text{ and }x=\frac{178}{25} \end{gathered}[/tex]So, the interval of increase is:
[tex]\text{ Increasing open interval }=(-\frac{129}{50},\frac{178}{25})[/tex]The decreasing interval is all value - increasing interval.
So,
Decreasing interval is:
[tex]=(-\infty,-\frac{129}{50})\cup(\frac{178}{25},\infty)[/tex]The function local maxima is:
The local maxima
[tex]\begin{gathered} f^{\prime}(x)=0 \\ \\ \text{ At }x=-\frac{129}{50}\text{ and }x=\frac{178}{25} \\ \end{gathered}[/tex]For local maxima check the function value:
[tex]\begin{gathered} f(x)=f(-\frac{129}{50}) \\ \\ =-4(-\frac{129}{50})^3+27.24(\frac{-129}{50})^2+220.4352(-\frac{129}{50})-4.76 \\ \\ =-323.468 \end{gathered}[/tex]Check the value of another critical point:
[tex]\begin{gathered} f(x)=f(\frac{178}{25}) \\ \\ =-4(\frac{178}{25})^3+27.24(\frac{178}{25})^2+220.4352(\frac{178}{25})-4.76 \\ \\ =1501.8776 \end{gathered}[/tex]So, the local maxima at
[tex]x=\frac{178}{25}[/tex]The local maxima is 178/25