Given the polynomial function:
[tex]P(t)=-16t^2+300t[/tex]Where, 300 feet per second is the initial velocity.
To find the height of the projectile at each given time, substitute the given time for t and evaluate.
We have:
• t = 1 sec
[tex]\begin{gathered} P(1)=-16(1)^2+300(1) \\ \\ P(1)\text{ = -16}+300 \\ \\ P(1)=\text{ 284 f}eet \end{gathered}[/tex]• t = 2 sec
[tex]\begin{gathered} P(2)=-16(2)^2+300(2) \\ \\ P(2)=-16(4)+600 \\ \\ P(2)=-64+600 \\ \\ P(2)=236\text{ fe}et \end{gathered}[/tex]• t = 10 sec
[tex]\begin{gathered} P(10)=-16(10)^2+300(10) \\ \\ P(10)=-16(100)+3000 \\ \\ P(10)=-1600+3000 \\ \\ P(10)=1400\text{ fe}et \end{gathered}[/tex]• t = 14 sec
[tex]\begin{gathered} P(14)=-16(14)^2+300(14) \\ \\ P(14)=-16(196)+4200 \\ \\ P(14)=-3136+4200 \\ \\ P(14)=1064\text{ fe}et \end{gathered}[/tex]