Answer:
length = 26 ft
width = 26 ft
Explanation:
The length of the rectangle is 4 less than 2 times the width:
[tex]length=2\times width-4[/tex]The perimeter of the rectangle is 82 ft:
[tex]2\times(length+width)=82[/tex]Now let us substitute the value of length from the first equation into the second equation. This gives,
[tex]2\times(2\times width-4+width)=82[/tex]For convenience, let us represent the width by the letter w. This turns our equation into the following.
[tex]\begin{gathered} 2\times(2\times w-4+w)=82 \\ \Rightarrow2(2w-4+w)=82 \end{gathered}[/tex]since 2w + w = 3w, the above becomes
[tex]2(3w-4)=82[/tex]dividing both sides by 2 gives
[tex]3w-4=\frac{82}{2}[/tex][tex]3w-4=41[/tex]adding 4 to both sides gives
[tex]\begin{gathered} 3w=41+4 \\ 3w=45 \end{gathered}[/tex]Finally, dividing both sides by 3 gives
[tex]w=45/3[/tex][tex]\boxed{w=15.}[/tex]Hence, the width of the rectangle is 15 ft.
With the value of the width in hand, we now find the length of the rectangle.
[tex]length=2\times width-4[/tex]since width = 15, the above equation gives
[tex]\begin{gathered} length=2\times15-4 \\ \Rightarrow length=30-4 \end{gathered}[/tex][tex]\Rightarrow\boxed{length=26.}[/tex]Hence, the length of the rectangle is 26 ft.
To summerise,
length = 26 ft
width = 26 ft