As given by the question
There are given that the golf ball covers a horizontal distance of 301.5 m.
Now,
[tex]\begin{gathered} R=301.5\text{ m} \\ \theta=25^{\circ} \end{gathered}[/tex]The vertical motion is:
[tex]v=u+at[/tex]Where
[tex]\begin{gathered} v=u\sin \theta \\ u=0\text{ m/s} \\ a=-gm/s^{\square} \end{gathered}[/tex]Put the value
[tex]t=\frac{2u\sin \theta}{g}[/tex]Then,
The range of projectile motion :
[tex]\begin{gathered} R=\frac{u^2\sin ^2\theta}{g} \\ u^2=393.59g \end{gathered}[/tex]And,
The height
[tex]\begin{gathered} H=\frac{u^2\times\sin^2\theta}{2g} \\ H=\frac{393.59^{}\times\sin ^2(25)}{2g} \\ H=35.15\text{ m} \end{gathered}[/tex]Hence, the maximum height that can reach by the ball is 35.15 m