Respuesta :

Recall that a reflection over a line y=k transforms the point (a,b) into the point (a,2y-b), therefore:

[tex]\begin{gathered} J^{\prime}(1,2\cdot2-3)=J^{\prime}(1,4-3)=J^{\prime}(1,1)\text{.} \\ U^{\prime}(0,2\cdot2-5)=U^{\prime}(0,4-5)=U^{\prime}(0,-1)\text{.} \\ R^{\prime}(1,2\cdot2-5)=R^{\prime}(1,4-5)=R^{\prime}(1,-1)\text{.} \\ C^{\prime}(3,2\cdot2-2)=C^{\prime}(3,4-2)=C^{\prime}(3,2)\text{.} \end{gathered}[/tex]

Answer: J'(1,1), U'(0,-1), R'(1,-1), C'(3,2).

RELAXING NOICE
Relax