If F(x,y,z)=(2x + y, x + z, y - z) and A is the matrix of F in the canonical basis, then a^2+b^2 equals to

Given:
[tex]\begin{gathered} f(x,y,z)=(2x+y,x+z,y-z) \\ A=\begin{bmatrix}{a} & {1} & {0} \\ {1} & {0} & {1} \\ {0} & {b} & {-1}\end{bmatrix} \end{gathered}[/tex]find:
[tex]a^2+b^2[/tex]Explanation: The matrix F can be written as
[tex]\begin{bmatrix}{2} & {1} & {0} \\ {1} & {0} & {1} \\ {0} & {1} & {-1}\end{bmatrix}[/tex]compare matrix F to matrix A we get,
[tex]a=2,b=1[/tex]so
[tex]\begin{gathered} a^2+b^2=(2)^2+(1)^2 \\ =4+1 \\ =5 \end{gathered}[/tex]Final answer:
[tex]a^2+b^2=5[/tex]