Answer:
[tex]\frac{33+11\sqrt[]{3}}{2}[/tex]Explanation:
The 30/60/90 triangle is given below
The perimeter of the triangle is
[tex]11+x+y[/tex]therefore, we need to find the value of x and y.
The value of x is given by
[tex]\cos 30=\frac{x}{11}[/tex]multiplying both sides by 11 gives
[tex]11\cos 30=x[/tex]now
[tex]\cos 30=\frac{\sqrt[]{3}}{2}[/tex]therefore.
[tex]\boxed{x=11\cdot\frac{\sqrt[]{3}}{2}}[/tex]Now we fidn the value of y.
The value of y is given by
[tex]\sin 30=\frac{y}{11}[/tex]multiplying both sides by 11 gives
[tex]11\sin 30=y[/tex]Now since
[tex]\sin 30=\frac{1}{2}[/tex]we have
[tex]y=11\cdot\frac{1}{2}[/tex][tex]\boxed{y=\frac{11}{2}}[/tex]with the value of x and y in hand, wecan now find the perimeter.
[tex]\text{perimeter = 11+x+y}[/tex][tex]perimeter=11+\frac{11}{2}+\frac{11\sqrt[]{3}}{2}[/tex]which simplifies to give
[tex]perimeter=\frac{33+11\sqrt[]{3}}{2}[/tex]which is our answer!