the length of the hypotenuse of 30 degrees 60 degrees 90 degrees triangle is 11. what is the perimeter?(options) :a. 11/2 + 33/2 square root 3b. 33/2+ 11/2 square root 3c. 11+33 square root 3d. 33+11 square root 3

Respuesta :

Answer:

[tex]\frac{33+11\sqrt[]{3}}{2}[/tex]

Explanation:

The 30/60/90 triangle is given below

The perimeter of the triangle is

[tex]11+x+y[/tex]

therefore, we need to find the value of x and y.

The value of x is given by

[tex]\cos 30=\frac{x}{11}[/tex]

multiplying both sides by 11 gives

[tex]11\cos 30=x[/tex]

now

[tex]\cos 30=\frac{\sqrt[]{3}}{2}[/tex]

therefore.

[tex]\boxed{x=11\cdot\frac{\sqrt[]{3}}{2}}[/tex]

Now we fidn the value of y.

The value of y is given by

[tex]\sin 30=\frac{y}{11}[/tex]

multiplying both sides by 11 gives

[tex]11\sin 30=y[/tex]

Now since

[tex]\sin 30=\frac{1}{2}[/tex]

we have

[tex]y=11\cdot\frac{1}{2}[/tex][tex]\boxed{y=\frac{11}{2}}[/tex]

with the value of x and y in hand, wecan now find the perimeter.

[tex]\text{perimeter = 11+x+y}[/tex][tex]perimeter=11+\frac{11}{2}+\frac{11\sqrt[]{3}}{2}[/tex]

which simplifies to give

[tex]perimeter=\frac{33+11\sqrt[]{3}}{2}[/tex]

which is our answer!

Ver imagen BrindleyM301484
RELAXING NOICE
Relax