Step 1:
Write the function
[tex]f(x)=-3x^2\text{ + 12x - 13}[/tex]a)
To find the y-intercept, plug x = 0 and to find the x-intercept, plug y = 0
[tex]\begin{gathered} y-\text{intercept} \\ f(0)\text{ = -3}\times0^2\text{ + 12(0) - 13 = 0 + 0 - 13 = -13} \\ y-\text{intercept = -13} \\ (\text{ 0, -13 ) y-intercept} \end{gathered}[/tex]b) To graph the function, you will need to find the vertex, the global maximum.
The extreme point is ( 2 , -1 )
Global maximum = ( 2 , -1 )
So you can graph the function using y-intercept (0, -13) and the global maximum (2 , -1)
c)
[tex]\begin{gathered} \text{The basic function of a parabola is } \\ \text{y = x}^2 \end{gathered}[/tex][tex]\begin{gathered} \text{The graph of a basic function y = x}^2,\text{ undergoes a transformation into } \\ \text{the graph of a function y = -3(x - 2)}^2\text{ - 1} \end{gathered}[/tex]The graph undergoes the following transformation
1. stretched by a factor of 3
[tex]y=3x^2[/tex]2. Then reflect over the x-axis
[tex]\text{y = -3x}^2[/tex]3. Then shift to the right by a factor of 2 units
[tex]\text{y = -3(x - 2)}^2[/tex]4. The finally shift vertically downward by 1 unit
[tex]\text{y = -3(x - 2)}^2\text{ - 1}[/tex]d)
e)
[tex]\begin{gathered} Domian\text{ = (-}\infty\text{ , }\infty) \\ Range\text{ = (}-\infty\text{, }-1\rbrack \end{gathered}[/tex]