Respuesta :

Function 1 and function have the same rate of change.

The rate of change for the function 2 is the slope m = 5( The coefficient of x)

For the function 1:

[tex]\begin{gathered} (x1,y1)=(0,5) \\ (x2,y2)=(5,20) \\ m=\frac{20-5}{5-0}=\frac{15}{5}=3 \end{gathered}[/tex]

Since:

[tex]5\ne3[/tex]

They dont have the same rate of change.

----------------------

The functions have the same value when x = 5.

For function 1:

[tex]x=5,y=20[/tex]

For function 2:

[tex]\begin{gathered} y(5)=5(5)+20 \\ y=45,x=5 \end{gathered}[/tex]

They have different values.

-----------------------------------

The sum of the rates of change for both functions is 8

[tex]3+5=8[/tex]

This is true

RELAXING NOICE
Relax