Function 1 and function have the same rate of change.
The rate of change for the function 2 is the slope m = 5( The coefficient of x)
For the function 1:
[tex]\begin{gathered} (x1,y1)=(0,5) \\ (x2,y2)=(5,20) \\ m=\frac{20-5}{5-0}=\frac{15}{5}=3 \end{gathered}[/tex]Since:
[tex]5\ne3[/tex]They dont have the same rate of change.
----------------------
The functions have the same value when x = 5.
For function 1:
[tex]x=5,y=20[/tex]For function 2:
[tex]\begin{gathered} y(5)=5(5)+20 \\ y=45,x=5 \end{gathered}[/tex]They have different values.
-----------------------------------
The sum of the rates of change for both functions is 8
[tex]3+5=8[/tex]This is true