Let's begin by listing out the information given to us:
blue marbles = 4
red marbles = 3
green marbles = 5
Total marbles = 4 + 3 + 5 = 12
The number of ways one can pick two red marbles first and one blue last is given by:
[tex]\begin{gathered} Pe=^{12}P_3+^{11}P_2+^{10}P_4 \\ Pe=\frac{12!}{(12-3)!}+\frac{11!}{(11-2)!}+\frac{10!}{(10-4)!} \\ Pe=\frac{12!}{9!}\times\frac{11!}{9!}\times\frac{10!}{6!} \\ Pe=1320\times110\times5040=731,808,000 \\ Pe=731,808,000 \\ \\ \therefore The\text{ total number of ways of doing this is }731,808,000 \end{gathered}[/tex]