Respuesta :

[tex]y=\frac{1}{2}x-1[/tex]

Explanation

the slope-intercept form of a line is

[tex]\begin{gathered} y=mx+b \\ \text{where m is the slope and b is the y-intercept} \end{gathered}[/tex]

Step 1

find the slope of the line:

the slope of a line is given by:

[tex]\begin{gathered} \text{slope}=\frac{change\text{ in y}}{\text{change in x}}=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1} \\ \text{where} \\ P1(x_1,y_1) \\ \text{and} \\ P2(x_2,y_2) \\ \text{are 2 points from the line} \end{gathered}[/tex]

then

pick 2 points from the line:

let

P1(0,-1)

P2(2,0)

now, replace and get the slope

[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{0-(-1)}{2-0}=\frac{1}{2} \end{gathered}[/tex]

so, the slope (m) is 1/2

Step 2

now, we need the y-intercept(b), if we have the graph, the simplest way to find the y-intercept is by watching the point where the line crosses the y-axis, in this case

[tex]y-\text{intercept}=-1[/tex]

so, we have

slope=m=1/2

y-intercept=-1

replace

[tex]y=mx+b\rightarrow y=\frac{1}{2}x-1[/tex]

so, the answer is

[tex]y=\frac{1}{2}x-1[/tex]

I hope this helps you

RELAXING NOICE
Relax