Given:
The characteristics of rational function:
Vertical asymptotes at x = -2 and x = 4
x-intercepts at (-3,0) and (1,0).
horizontal asymptote at y = -2
The foem of rational function is,
[tex]\frac{f(x)}{g(x)}[/tex]For the vertical asymtotes x = -2 and x = 4, That means denominator will have the terms,
[tex]\begin{gathered} x=-2,x=4 \\ (x+2),(x-4) \end{gathered}[/tex]For x intercept (-3,0) and (1,0) , the terms on the numerator is,
[tex]\begin{gathered} (x+3)\text{ and (x-1)} \\ \text{Because this factors will given the values as x=-3 and x=1} \end{gathered}[/tex]So, the rational function becomes,
[tex]\frac{f(x)}{g(x)}=a\frac{(x+3)(x-1)}{(x+2)(x-4)}[/tex]The horizontal asymtoes will describes the functions behaviour when x approaches to infinity.
So, a=-2.
[tex]\frac{f(x)}{g(x)}=-2\frac{(x+3)(x-1)}{(x+2)(x-4)}[/tex]Answer:
[tex]\frac{-2(x+3)(x-1)}{(x+2)(x-4)}[/tex]